Propuesta de una Plataforma de Bajo Costo Basada en Internet de las Cosas para Agricultura Inteligente

##plugins.themes.bootstrap3.article.main##

Daniel Nuñez-Agurto http://orcid.org/0000-0001-7737-3815
Eduardo Benavides-Astudillo
German Rodríguez
Diego Salazar

Keywords

Agricultura inteligente, Internet de las Cosas, Node-Red, Micropython

Resumen

La agricultura tradicional se ve afectada en rendimiento y calidad por diferentes factores ambientales externos. Para enfrentar este problema se vuelve necesaria la innovación tecnológica, permitiendo de esta manera, optimizar recursos invertidos en los cultivos, para volverlos más productivos y rentables. Una de las alternativas de innovación para el sector agrícola es la implementación de Internet de las Cosas (IoT). Es así que este trabajo propone la implementación de una solución de hardware y software de bajo costo, que permita almacenar y analizar datos ambientales de los cultivos de manera centralizada y remota, para posteriormente realizar pronósticos con mayor precisión en indicadores ambientales como la humedad y la temperatura. Para el desarrollo de esta propuesta se utilizaron microcontroladores NodeMCU ESP8266, sensores de temperatura/humedad AM2302, sensores de lluvia MH-RD, y se desarrolló un dashboard para analizar los datos en tiempo real utilizando la herramienta node-red. Para que el sistema interactúe con los sensores remotos, se usó una conexión inalámbrica wifi por medio del protocolo MQTT. Las pruebas de esta propuesta se las realizaron en las parcelas agrícolas de la Universidad de las Fuerzas Armadas ESPE Sede Santo Domingo. Los resultados obtenidos mediante la operación del prototipo tuvieron mayor precisión en comparación de un termohigrómetro y la aplicación google weather.
Abstract 275 | PDF Downloads 111

Citas

Barnaghi, P., Sheth, A., & Henson, C. (2013). From data to actionable knowledge: Big data challenges in the web of things. IEEE Intelligent Systems, 28(6). https://doi.org/10.1109/MIS.2013.142

CISCO. (2018). Cisco visual networking index: forecast and methodlogy, 2012c2017. Retrieved from: https://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual- networking-index-vni/white-paper-c11-741490.html

Dholu, M., & Ghodinde, K. A. (2018). Internet of Things (IoT) for Precision Agriculture Application. Proceedings of the 2nd International Conference on Trends in Electronics and Informatics, ICOEI 2018, (Icoei), 339–342. https://doi.org/10.1109/ICOEI.2018.8553720

Guo, T., & Zhong, W. (2015). Design and implementation of the span greenhouse agriculture Internet of Things system. Proceedings of 2015 International Conference on Fluid Power and Mechatronics, FPM 2015, 398–401. https://doi.org/10.1109/FPM.2015.7337148

Halder, S., & Sivakumar, G. (2018). Embedded based remote monitoring station for live streaming of temperature and humidity. International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, ICEECCOT 2017, 2018-January, 284–287.
https://doi.org/10.1109/ICEECCOT.2017.8284683
Heble, S., Kumar, A., Prasad, K. V. V. D., Samirana, S., Rajalakshmi, P., & Desai, U. B. (2018). A low power IoT network for smart agriculture. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, 2018-January, 609–614. https://doi.org/10.1109/WF-IoT.2018.8355152

kopoulos, D. (2015). Do-it-Yourself Digital Agriculture applications with semantically enhanced IoT platform. 2015 IEEE 10th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2015, 7–9. https://doi.org/10.1109/ISSNIP.2015.7106951

Khattab, A., Abdelgawad, A., & Yelmarthi, K. (2017). Design and implementation of a cloud-based IoT scheme for precision agriculture. Proceedings of the International Conference on Microelectronics, ICM, 201–204. https://doi.org/10.1109/ICM.2016.7847850

Kodali, R. K., & Mahesh, K. S. (2016). Low cost ambient monitoring using ESP8266. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, IC3I 2016 (pp. 779–782). https://doi.org/10.1109/IC3I.2016.7918788

Kodali, R. K., & Soratkal, S. R. (2017). MQTT based home automation system using ESP8266. IEEE Region 10 Humanitarian Technology Conference 2016, R10- HTC 2016 - Proceedings.
https://doi.org/10.1109/R10-HTC.2016.7906845

Ma, J., Zhou, X., Li, S., & Li, Z. (2011). Connecting agriculture to the internet of things through sensor networks. Proceedings - 2011 IEEE International Conferences on Internet of Things and Cyber, Physical and Social Computing, Ithings /CPSCom 2011, 184–187.
https://doi.org/10.1109/iThings/CPSCom.2011.32

Mangundu, E. M., Mateus, J. N., Zodi, G. A. L., & Johson, J. (2018). A wireless sensor network for rainfall monitoring, using cellular network: A case for Namibia. 2017 Global Wireless Summit, GWS 2017, 2018-January, 240–244. https://doi.org/10.1109/GWS.2017.8300469

Mat, I., Kassim, M. R. M., & Harun, A. N. (2014). Precision irrigation performance measurement using wireless sensor network. International Conference on Ubiquitous and Future Networks, ICUFN, 154–157. https://doi.org/10.1109/ICUFN.2014.6876771

Math, R. K., & Dharwadkar, N. V. (2017). A wireless sensor network based low cost and energy efficient frame work for precision agriculture. 2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017 - Proceedings.
https://doi.org/10.1109/ICNTE.2017.7947883



Math, R. K. M., & Dharwadkar, N. V. (2019). IoT Based low-cost weather station and monitoring system for precision agriculture in India. Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018, 81–86.
https://doi.org/10.1109/I-SMAC.2018.8653749

Munandar, A., Fakhrurroja, H., Rizqyawan, M. I., Pratama, R. P., Wibowo, J. W., & Anto, I. A. F. (2018). Design of real-time weather monitoring system based on mobile application using automatic weather station. Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT 2017, 44–47.
https://doi.org/10.1109/ICACOMIT.2017.8253384

MongoDB. (2018). The MongoDB 3.6 Manual — MongoDB Manual 3.6.
Retrieved from: https://docs.mongodb.com/manual/

Montoya, E. A. Q., Colorado, S. F. J., Muñoz, W. Y. C., & Golondrino, G. E. C. (2017). Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, (24), 39–56. https://doi.org/10.17013/risti.24.39-56

Mosquitto. (2018). Eclipse Mosquitto. Retrieved November 3, 2018, from https://mosquitto.org/

Nageswara Rao, R., & Sridhar, B. (2018). IoT based smart crop-field monitoring and automation irrigation system. Proceedings of the 2nd International Conference on Inventive Systems and Control, ICISC 2018, (Icisc), 478–483.
https://doi.org/ 10.1109/ICISC.2018.8399118

Node-Red. (2018). Node-RED. Retrieved October 21, 2018, from https://nodered.org/
Openhacks. (2016). RAIN SENSOR MODULE. Retrieved from https://www.openhacks.com/uploadsproductos/rain_sensor_module.pdf

Patil, M. M., Hanni, A., Tejeshwar, C. H., & Patil, P. (2017). A qualitative analysis of the performance of MongoDB vs MySQL database based on insertion and retriewal operations using a web/android application to explore load balancing- Sharding in MongoDB and its advantages. Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017, 325–330.
https://doi.org/10.1109/I-SMAC.2017.8058365

Qiu, T., Xiao, H., & Zhou, P. (2013). Frameworl and case studies of intelligence monitoring platform in facility agriculture ecosystem. 2013 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics 2013, 522–525.
https://doi.org/10.1109/Argo- Geoinformatics.2013.6621976


Saini, H., Thakur, A., Ahuja, S., Sabharwal, N., & Kumar, N. (2016). Arduino based automatic wireless weather station with remote graphical application and alerts. 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016, 605–609.
https://doi.org/10.1109/SPIN.2016.7566768

Shaout, A., Li, Y., Zhou, M., & Awad, S. (2015). Low cost embedded weather station with intelligent system. 2014 10th International Computer Engineering Conference: Today Information Society What’s Next?, ICENCO 2014, 100– 106.
https://doi.org/10.1109/ICENCO.2014.7050439

Siano, P. (2014). Demand response and smart grids - A survey. Renewable and Sustainable Energy Reviews, 30, 461–478. https://doi.org/10.1016/j.rser.2013.10.022

Saputra, L. K. P., & Lukito, Y. (2017). Implementation of air conditioning control system using REST protocol based on NodeMCU ESP8266. 2017 International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), 126–130.
https://doi.org/10.1109/ICON-SONICS.2017.8267834

Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-Cost Wireless Monitoring and Decision Support for Water Saving in Agriculture. IEEE Sensors Journal, 17(13), 4299–4309.
https://doi.org/10.1109/JSEN.2017.2705043

Zanella, a, Bui, N., Castellani, a, Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328

Zhang, Peng & Zhang, Junjie & Chen, M. (2016). Economic Impacts of Climate Change on Agriculture: The Importance of Additional Climatic Variables Other than Temperature and Precipitation. Journal of Environmental Economics and Management, 8–31.